Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1679, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354806

RESUMO

Photosystem I (PSI) is one of the two photosystems functioning in light-energy harvesting, transfer, and electron transfer in photosynthesis. However, the oligomerization state of PSI is variable among photosynthetic organisms. We present a 3.8-Å resolution cryo-electron microscopic structure of tetrameric PSI isolated from the glaucophyte alga Cyanophora paradoxa, which reveals differences with PSI from other organisms in subunit composition and organization. The PSI tetramer is organized in a dimer of dimers with a C2 symmetry. Unlike cyanobacterial PSI tetramers, two of the four monomers are rotated around 90°, resulting in a completely different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and excitation-energy transfer in the Cyanophora PSI tetramer, suggesting that the Cyanophora PSI could represent a turning point in the evolution of PSI from prokaryotes to eukaryotes.


Assuntos
Cianobactérias , Cyanophora , Clorofila , Cianobactérias/metabolismo , Cyanophora/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo
2.
Protoplasma ; 259(4): 855-867, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34553240

RESUMO

In unicellular algae with a single chloroplast, two mechanisms coordinate cell and chloroplast division: the S phase-specific expression of chloroplast division genes and the permission of cell cycle progression from prophase to metaphase by the onset of chloroplast division. This study investigated whether a similar mechanism exists in a unicellular alga with multiple chloroplasts using the glaucophyte alga Cyanophora sudae, which contains four chloroplasts (cyanelles). Cells with eight cyanelles appeared after the S phase arrest with a topoisomerase inhibitor camptothecin, suggesting that the mechanism of S phase-specific expression of cyanelle division genes was conserved in this alga. Inhibition of peptidoglycan synthesis by ß-lactam antibiotic ampicillin arrested cells in the S-G2 phase, and inhibition of septum invagination with cephalexin resulted in cells with two nuclei and one cyanelle, despite inhibition of cyanelle division. This indicates that even in the unicellular alga with four chloroplasts, the cell cycle progresses to the M phase following the progression of chloroplast division to a certain division stage. These results suggested that C. sudae has two mechanisms for coordinating cell and cyanelle division, similar to the unicellular algae with a single chloroplast.


Assuntos
Cyanophora , Ciclo Celular , Cloroplastos/metabolismo , Cyanophora/genética , Cyanophora/metabolismo , Mitose , Plastídeos/metabolismo
3.
J Cell Sci ; 134(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550353

RESUMO

Cytochrome c6 is a redox carrier in the thylakoid lumen of cyanobacteria and some eukaryotic algae. Although the isofunctional plastocyanin is present in land plants and the green alga Chlamydomonas reinhardtii, these organisms also possess a cytochrome c6-like protein designated as cytochrome c6A. Two other cytochrome c6-like groups, c6B and c6C, have been identified in cyanobacteria. In this study, we have identified a novel c6-like cytochrome called PetJ2, which is encoded in the nuclear genome of Cyanophora paradoxa, a member of the glaucophytes - the basal branch of the Archaeplastida. We propose that glaucophyte PetJ2 protein is related to cyanobacterial c6B and c6C cytochromes, and that cryptic green algal and land plant cytochromes c6A evolved from an ancestral archaeplastidial PetJ2 protein. In vitro import experiments with isolated muroplasts revealed that PetJ2 is imported into plastids. Although it harbors a twin-arginine motif in its thylakoid-targeting peptide, which is generally indicative of thylakoid import via the Tat import pathway, our import experiments with isolated muroplasts and the heterologous pea thylakoid import system revealed that PetJ2 uses the Sec pathway instead of the Tat import pathway.


Assuntos
Cyanophora , Sequência de Aminoácidos , Cyanophora/metabolismo , Citocromos/metabolismo , Eucariotos/metabolismo , Plastídeos/metabolismo
4.
Plant J ; 106(4): 1105-1115, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666295

RESUMO

Present-day mitochondria derive from a single endosymbiosis of an α-proteobacterium into a proto-eukaryotic cell. Since this monophyletic event, mitochondria have evolved considerably, and unique traits have been independently acquired in the different eukaryotic kingdoms. Mitochondrial genome expression and RNA metabolism have diverged greatly. Here, Cyanophora paradoxa, a freshwater alga considered as a living fossil among photosynthetic organisms, represents an exciting model for studying the evolution of mitochondrial gene expression. As expected, fully mature tRNAs are released from primary transcripts to function in mitochondrial translation. We also show that these tRNAs take part in an mRNA processing punctuation mechanism in a non-conventional manner, leading to mRNA-tRNA hybrids with a CCA triplet at their 3'-extremities. In this case, tRNAs are probably used as stabilizing structures impeding the degradation of mRNA by exonucleases. From our data we propose that the present-day tRNA-like elements (t-elements) found at the 3'-terminals of mitochondrial mRNAs in land plants originate from true tRNAs like those observed in the mitochondria of this basal photosynthetic glaucophyte.


Assuntos
Cyanophora/genética , Genoma Mitocondrial/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mitocondrial/genética , RNA de Transferência/genética , Mitocôndrias/genética
5.
J Eukaryot Microbiol ; 68(1): e12831, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142007

RESUMO

Cyanophora is the glaucophyte model taxon. Following the sequencing of the nuclear genome of C. paradoxa, studies based on single organelle and nuclear molecular markers revealed previously unrecognized species diversity within this glaucophyte genus. Here, we present the complete plastid (ptDNA) and mitochondrial (mtDNA) genomes of C. kugrensii, C. sudae, and C. biloba. The respective sizes and coding capacities of both ptDNAs and mtDNAs are conserved among Cyanophora species with only minor differences due to specific gene duplications. Organelle phylogenomic analyses consistently recover the species C. kugrensii and C. paradoxa as a clade and C. sudae and C. biloba as a separate group. The phylogenetic affiliations of the four Cyanophora species are consistent with architectural similarities shared at the organelle genomic level. Genetic distance estimations from both organelle sequences are also consistent with phylogenetic and architecture evidence. Comparative analyses confirm that the Cyanophora mitochondrial genes accumulate substitutions at 3-fold higher rates than plastid counterparts, suggesting that mtDNA markers are more appropriate to investigate glaucophyte diversity and evolutionary events that occur at a population level. The study of complete organelle genomes is becoming the standard for species delimitation and is particularly relevant to study cryptic diversity in microbial groups.


Assuntos
Cyanophora/genética , Evolução Molecular , Variação Genética , Genoma Mitocondrial , Genomas de Plastídeos , Evolução Biológica , DNA Mitocondrial/análise
6.
New Phytol ; 225(4): 1562-1577, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31602652

RESUMO

The glaucophyte Cyanophora paradoxa represents the most basal member of the kingdom Archaeplastida, but the function and expression of most of its genes are unknown. This information is needed to uncover how functional gene modules, that is groups of genes performing a given function, evolved in the plant kingdom. We have generated a gene expression atlas capturing responses of Cyanophora to various abiotic stresses. The data were included in the CoNekT-Plants database, enabling comparative transcriptomic analyses across two algae and six land plants. We demonstrate how the database can be used to study gene expression, co-expression networks and gene function in Cyanophora, and how conserved transcriptional programs can be identified. We identified gene modules involved in phycobilisome biosynthesis, response to high light and cell division. While we observed no correlation between the number of differentially expressed genes and the impact on growth of Cyanophora, we found that the response to stress involves a conserved, kingdom-wide transcriptional reprogramming, which is activated upon most stresses in algae and land plants. The Cyanophora stress gene expression atlas and the tools found in the https://conekt.plant.tools/ database thus provide a useful resource to reveal functionally related genes and stress responses in the plant kingdom.


Assuntos
Cyanophora/metabolismo , Magnoliopsida/fisiologia , Proliferação de Células , Cyanophora/genética , Bases de Dados Genéticas , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Luz , RNA de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico , Temperatura , Transcriptoma , Regulação para Cima
7.
DNA Res ; 26(4): 287-299, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098614

RESUMO

Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.


Assuntos
Cyanophora/genética , Genoma de Planta , Cyanophora/classificação , Cyanophora/ultraestrutura , Peptidoglicano/ultraestrutura , Filogenia
8.
J Biol Chem ; 293(20): 7777-7785, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29602906

RESUMO

The thylakoid lumen is a membrane-enclosed aqueous compartment. Growing evidence indicates that the thylakoid lumen is not only a sink for protons and inorganic ions translocated during photosynthetic reactions but also a place for metabolic activities, e.g. proteolysis of photodamaged proteins, to sustain efficient photosynthesis. However, the mechanism whereby organic molecules move across the thylakoid membranes to sustain these lumenal activities is not well understood. In a recent study of Cyanophora paradoxa chloroplasts (muroplasts), we fortuitously detected a conspicuous diffusion channel activity in the thylakoid membranes. Here, using proteoliposomes reconstituted with the thylakoid membranes from muroplasts and from two other phylogenetically distinct organisms, cyanobacterium Synechocystis sp. PCC 6803 and spinach, we demonstrated the existence of nonselective channels large enough for enabling permeation of small organic compounds (e.g. carbohydrates and amino acids with Mr < 1500) in the thylakoid membranes. Moreover, we purified, identified, and characterized a muroplast channel named here CpTPOR. Osmotic swelling experiments revealed that CpTPOR forms a nonselective pore with an estimated radius of ∼1.3 nm. A lipid bilayer experiment showed variable-conductance channel activity with a typical single-channel conductance of 1.8 nS in 1 m KCl with infrequent closing transitions. The CpTPOR amino acid sequence was moderately similar to that of a voltage-dependent anion-selective channel of the mitochondrial outer membrane, although CpTPOR exhibited no obvious selectivity for anions and no voltage-dependent gating. We propose that transmembrane diffusion pathways are ubiquitous in the thylakoid membranes, presumably enabling rapid transfer of various metabolites between the lumen and stroma.


Assuntos
Cloroplastos/metabolismo , Cyanophora/metabolismo , Bicamadas Lipídicas/metabolismo , Compostos Orgânicos/metabolismo , Synechocystis/fisiologia , Tilacoides/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Permeabilidade da Membrana Celular , Osmose , Fotossíntese , Proteolipídeos
9.
J Phycol ; 53(6): 1117-1119, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29207439

Assuntos
Cyanophora
10.
Plant Cell Physiol ; 58(10): 1743-1751, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017001

RESUMO

Chloroplasts are believed to be descendants of ancestral cyanobacteria that have a peptidoglycan layer between the outer and the inner membranes. In particular, cyanelles having peptidoglycan in Cyanophora paradoxa are considered as evidence for the endosymbiotic origin of chloroplasts. The moss Physcomitrella patens has a complete set of genes involved in the synthesis of peptidoglycan, but a peptidoglycan layer has not been observed by conventional electron microscopy to date. Recently, a new metabolic labeling technique using a fluorescent probe was applied to visualize putative peptidoglycan surrounding the chloroplasts. The exact localization of the peptidoglycan, however, has not been clearly identified. Here we examined conventional electron micrographs of two types of moss materials (mutants or ampicillin-treated plants), one presumably having peptidoglycan and the other presumably lacking peptidoglycan, and analyzed in detail, by single-pixel densitometry, the electron density of the chloroplast envelope membranes and the intermembrane space. Statistical analysis showed that the relative electron density within the intermembrane space with respect to that of the envelope membranes was significantly higher in the materials presumably having peptidoglycan than in the materials presumably devoid of peptidoglycan. We consider this difference as bona fide evidence for the presence of peptidoglycan between the outer and the inner envelope membranes in the wild-type chloroplasts of the moss, although its density is lower than that in bacteria and cyanelles. We will also discuss this low-density peptidoglycan in the light of the phylogenetic origin of peptidoglycan biosynthesis enzymes.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cyanophora/metabolismo , Cyanophora/ultraestrutura , Densitometria/métodos , Espaço Intracelular/metabolismo , Microscopia Eletrônica , Peptidoglicano/metabolismo , Ampicilina/farmacologia , Análise de Variância , Modelos Biológicos , Mutação/genética , Synechocystis/ultraestrutura
11.
J Phycol ; 53(6): 1120-1150, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741699

RESUMO

Glaucophytes are a kingdom-scale lineage of unicellular algae with uniquely underived plastids. The genus Cyanophora is of particular interest because it is the only glaucophyte that is a flagellate throughout its life cycle, making its morphology more directly comparable than other glaucophytes to other eukaryote flagellates. The ultrastructure of Cyanophora has already been studied, primarily in the 1960s and 1970s. However, the usefulness of that work has been undermined by its own limitations, subsequent misinterpretations, and a recent taxonomic revision of the genus. For example, Cyanophora's microtubular roots have been widely reported as cruciate, with rotationally symmetrical wide and thin roots, although the first ultrastructural work described it as having three wide and one narrow root. We examine Cyanophora cuspidata using scanning and transmission electron microscopy, and construct a model of its cytoskeleton using serial-section TEM. We confirm the earlier model, with asymmetric roots. We describe previously unknown and unsuspected features of its microtubular roots, including (i) a rearrangement of individual microtubules within the posterior right root, (ii) a splitting of the posterior left root into two subroots, and (iii) the convergence and termination of the narrow roots against wider ones in both the anterior and posterior subsystems of the flagellar apparatus. We also describe a large complement of nonmicrotubular components of the cytoskeleton, including a substantial connective between the posterior right root and the anterior basal body. Our work should serve as the starting point for a re-examination of both internal glaucophyte diversity and morphological evolution in eukaryotes.


Assuntos
Cyanophora/ultraestrutura , Citoesqueleto/ultraestrutura , Flagelos/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microtúbulos/ultraestrutura
12.
Sci Rep ; 7: 46100, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387347

RESUMO

Glaucophytes are primary symbiotic algae with unique plastids called cyanelles, whose structure is most similar to ancestral cyanobacteria among plastids in photosynthetic organisms. Here we compare the regulation of photosynthesis in glaucophyte with that in cyanobacteria in the aim of elucidating the changes caused by the symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways. Chlorophyll fluorescence measurements of the glaucophyte Cyanophora paradoxa NIES-547 indicated that plastoquinone (PQ) pool in photosynthetic electron transfer was reduced in the dark by chlororespiration. The levels of nonphotochemical quenching of chlorophyll fluorescence was high in the dark but decreased under low light, and increased again under high light. This type of concave light dependence was quite similar to that observed in cyanobacteria. Moreover, the addition of ionophore hardly affected nonphotochemical quenching, suggesting state transition as a main component of the regulatory system in C. paradoxa. These results suggest that cyanelles of C. paradoxa retain many of the characteristics observed in their ancestral cyanobacteria. From the viewpoint of metabolic interactions, C. paradoxa is the primary symbiotic algae most similar to cyanobacteria than other lineages of photosynthetic organisms.


Assuntos
Cloroplastos/metabolismo , Cyanophora/fisiologia , Fotossíntese , Respiração Celular , Clorofila/metabolismo , Cyanophora/crescimento & desenvolvimento , Escuridão , Cinética , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Plastoquinona/metabolismo , Espectrometria de Fluorescência , Temperatura
13.
J Plant Res ; 130(4): 635-645, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382528

RESUMO

Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named "cyanelles". In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.


Assuntos
Cercozoários/enzimologia , Clorófitas/enzimologia , Cyanophora/enzimologia , Evolução Molecular , Peptidoglicano/biossíntese , Plantas/enzimologia , Cercozoários/genética , Clorófitas/genética , Cloroplastos/enzimologia , Cyanophora/genética , Filogenia , Plantas/genética , Plastídeos/enzimologia
14.
Plant Cell Physiol ; 58(1): e6, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069893

RESUMO

Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online.


Assuntos
Proteínas de Algas/metabolismo , Bases de Dados de Proteínas , Microalgas/metabolismo , Proteoma/metabolismo , Proteínas de Algas/classificação , Clorófitas/classificação , Clorófitas/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Cyanophora/metabolismo , Diatomáceas/classificação , Diatomáceas/metabolismo , Internet , Microalgas/classificação , Oomicetos/classificação , Oomicetos/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Rodófitas/classificação , Rodófitas/metabolismo
15.
J Biol Chem ; 291(38): 20198-209, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27502278

RESUMO

The cyanelle is a primitive chloroplast that contains a peptidoglycan layer between its inner and outer membranes. Despite the fact that the envelope structure of the cyanelle is reminiscent of Gram-negative bacteria, the Cyanophora paradoxa genome appears to lack genes encoding homologs of putative peptidoglycan-associated outer membrane proteins and outer membrane channels. These are key components of Gram-negative bacterial membranes, maintaining structural stability and regulating permeability of outer membrane, respectively. Here, we discovered and characterized two dominant peptidoglycan-associated outer membrane proteins of the cyanelle (∼2 × 10(6) molecules per cyanelle). We named these proteins CppF and CppS (cyanelle peptidoglycan-associated proteins). They are homologous to each other and function as a diffusion channel that allows the permeation of compounds with Mr <1,000 as revealed by permeability measurements using proteoliposomes reconstituted with purified CppS and CppF. Unexpectedly, amino acid sequence analysis revealed no evolutionary linkage to cyanobacteria, showing only a moderate similarity to cell surface proteins of bacteria belonging to Planctomycetes phylum. Our findings suggest that the C. paradoxa cyanelle adopted non-cyanobacterial lineage proteins as its main outer membrane components, providing a physical link with the underlying peptidoglycan layer and functioning as a diffusion route for various small substances across the outer membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Cyanophora/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/genética , Cyanophora/genética , Peptidoglicano/genética
17.
Sci Rep ; 5: 14735, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439276

RESUMO

A heterotrophic organism 1-2 billion years ago enslaved a cyanobacterium to become the first photosynthetic eukaryote, and has diverged globally. The primary phototrophs, glaucophytes, are thought to retain ancestral features of the first photosynthetic eukaryote, but examining the protoplast ultrastructure has previously been problematic in the coccoid glaucophyte Glaucocystis due to its thick cell wall. Here, we examined the three-dimensional (3D) ultrastructure in two divergent species of Glaucocystis using ultra-high voltage electron microscopy. Three-dimensional modelling of Glaucocystis cells using electron tomography clearly showed that numerous, leaflet-like flattened vesicles are distributed throughout the protoplast periphery just underneath a single-layered plasma membrane. This 3D feature is essentially identical to that of another glaucophyte genus Cyanophora, as well as the secondary phototrophs in Alveolata. Thus, the common ancestor of glaucophytes and/or the first photosynthetic eukaryote may have shown similar 3D structures.


Assuntos
Cyanophora/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão/métodos , Fotossíntese/fisiologia , Plastídeos/ultraestrutura , Cyanophora/química , Plastídeos/química
18.
Nat Commun ; 6: 6421, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25758953

RESUMO

Primary plastids descend from the cyanobacterial endosymbiont of an ancient eukaryotic host, but the initial selective drivers that stabilized the association between these two cells are still unclear. One hypothesis that has achieved recent prominence suggests that the first role of the cyanobiont was in energy provision for a host cell whose reserves were being depleted by an intracellular chlamydial pathogen. A pivotal claim is that it was chlamydial proteins themselves that converted otherwise unusable cyanobacterial metabolites into host energy stores. We test this hypothesis by investigating the origins of the key enzymes using sophisticated phylogenetics. Here we show a mosaic origin for the relevant pathway combining genes with host, cyanobacterial or bacterial ancestry, but we detect no strong case for Chlamydiae to host transfer under the best-fitting models. Our conclusion is that there is no compelling evidence from gene trees that Chlamydiae played any role in establishing the primary plastid endosymbiosis.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Chlamydia/genética , Cianobactérias/genética , Cyanophora/genética , Plastídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Teorema de Bayes , Evolução Biológica , Chlamydia/classificação , Chlamydia/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Cyanophora/classificação , Cyanophora/metabolismo , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Plastídeos/genética , Simbiose/fisiologia
19.
Genome Biol Evol ; 6(10): 2774-85, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25281844

RESUMO

A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic eukaryotes. However, so far only the plastid and mitochondrial genomes of the glaucophytes Cyanophora paradoxa (strain CCMP 329) and Glaucocystis nostochinearum (strain UTEX 64) have been completely sequenced. Here, we present the complete mitochondrial genomes of Gloeochaete wittrockiana SAG 46.84 (36.05 kb; 33 protein-coding genes, 6 unidentified open reading frames [ORFs], and 28 transfer RNAs [tRNAs]) and Cyanoptyche gloeocystis SAG 4.97 (33.24 kb; 33 protein-coding genes, 6 unidentified ORFs, and 26 tRNAs), which represent two genera distantly related to the "well-known" Cyanophora and Glaucocystis. The mitochondrial gene repertoire of the four glaucophyte species is highly conserved, whereas the gene order shows considerable variation. Phylogenetic analyses of 14 mitochondrial genes from representative taxa from the major eukaryotic supergroups, here including novel sequences from the glaucophytes Cyanophora tetracyanea (strain NIES-764) and Cyanophora biloba (strain UTEX LB 2766), recover a clade uniting the three Archaeplastida lineages; this recovery is dependent on our novel glaucophyte data, demonstrating the importance of greater taxon sampling within the glaucophytes.


Assuntos
Cyanophora/genética , Genoma Mitocondrial/genética , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/genética
20.
Mol Biol Evol ; 31(10): 2735-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063443

RESUMO

Calcium signaling is one of the most extensively employed signal transduction mechanisms in life. As life evolved into increasingly complex organisms, Ca(2+) acquired more extensive and varied functions. Here, we compare genes encoding proteins that govern Ca(2+) entry and exit across cells or organelles within organisms of early eukaryotic evolution into fungi, plants, and animals. Recent phylogenomics analyses reveal a complex Ca(2+) signaling machinery in the apusozoan protist Thecamonas trahens, a putative unicellular progenitor of Opisthokonta. We compare T. trahens Ca(2+) signaling to that in a marine bikont protist, Aurantiochytrium limacinum, and demonstrate the conservation of key Ca(2+) signaling molecules in the basally diverging alga Cyanophora paradoxa. Particularly, our findings reveal the conservation of the CatSper channel complex in Au. limacinum and C. paradoxa, suggesting that the CatSper complex likely originated from an ancestral Ca(2+) signaling machinery at the root of early eukaryotic evolution prior to the unikont/bikont split.


Assuntos
Canais de Cálcio/genética , Sinalização do Cálcio , Eucariotos/genética , Evolução Molecular , Cyanophora/genética , Cyanophora/metabolismo , Eucariotos/classificação , Eucariotos/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...